\(\int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx\) [329]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 86 \[ \int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} e}+\frac {d \text {arctanh}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e \sqrt {c d^2+a e^2}} \]

[Out]

arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))/e/c^(1/2)+d*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))/e/(a*
e^2+c*d^2)^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {858, 223, 212, 739} \[ \int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx=\frac {d \text {arctanh}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e \sqrt {a e^2+c d^2}}+\frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} e} \]

[In]

Int[x/((d + e*x)*Sqrt[a + c*x^2]),x]

[Out]

ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]]/(Sqrt[c]*e) + (d*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^
2])])/(e*Sqrt[c*d^2 + a*e^2])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {1}{\sqrt {a+c x^2}} \, dx}{e}-\frac {d \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{e} \\ & = \frac {\text {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{e}+\frac {d \text {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{e} \\ & = \frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} e}+\frac {d \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e \sqrt {c d^2+a e^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.14 \[ \int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx=\frac {\frac {2 d \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )}{\sqrt {-c d^2-a e^2}}-\frac {\log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )}{\sqrt {c}}}{e} \]

[In]

Integrate[x/((d + e*x)*Sqrt[a + c*x^2]),x]

[Out]

((2*d*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + c*x^2])/Sqrt[-(c*d^2) - a*e^2]])/Sqrt[-(c*d^2) - a*e^2] - Log[-(S
qrt[c]*x) + Sqrt[a + c*x^2]]/Sqrt[c])/e

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(150\) vs. \(2(74)=148\).

Time = 0.41 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.76

method result size
default \(\frac {\ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right )}{e \sqrt {c}}+\frac {d \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\) \(151\)

[In]

int(x/(e*x+d)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/e*ln(x*c^(1/2)+(c*x^2+a)^(1/2))/c^(1/2)+d/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2/e*c*d*(x+d
/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c-2/e*c*d*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))

Fricas [A] (verification not implemented)

none

Time = 0.45 (sec) , antiderivative size = 631, normalized size of antiderivative = 7.34 \[ \int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx=\left [\frac {\sqrt {c d^{2} + a e^{2}} c d \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} + 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + {\left (c d^{2} + a e^{2}\right )} \sqrt {c} \log \left (-2 \, c x^{2} - 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right )}{2 \, {\left (c^{2} d^{2} e + a c e^{3}\right )}}, \frac {2 \, \sqrt {-c d^{2} - a e^{2}} c d \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) + {\left (c d^{2} + a e^{2}\right )} \sqrt {c} \log \left (-2 \, c x^{2} - 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right )}{2 \, {\left (c^{2} d^{2} e + a c e^{3}\right )}}, \frac {\sqrt {c d^{2} + a e^{2}} c d \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} + 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 2 \, {\left (c d^{2} + a e^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right )}{2 \, {\left (c^{2} d^{2} e + a c e^{3}\right )}}, \frac {\sqrt {-c d^{2} - a e^{2}} c d \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) - {\left (c d^{2} + a e^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right )}{c^{2} d^{2} e + a c e^{3}}\right ] \]

[In]

integrate(x/(e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(c*d^2 + a*e^2)*c*d*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^
2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + (c*d^2 + a*e^2)*sqrt(c)*log(-2*c*x^2 -
2*sqrt(c*x^2 + a)*sqrt(c)*x - a))/(c^2*d^2*e + a*c*e^3), 1/2*(2*sqrt(-c*d^2 - a*e^2)*c*d*arctan(sqrt(-c*d^2 -
a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) + (c*d^2 + a*e^2)*sqrt(c)*
log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a))/(c^2*d^2*e + a*c*e^3), 1/2*(sqrt(c*d^2 + a*e^2)*c*d*log((2*a*
c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a
))/(e^2*x^2 + 2*d*e*x + d^2)) - 2*(c*d^2 + a*e^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)))/(c^2*d^2*e + a*
c*e^3), (sqrt(-c*d^2 - a*e^2)*c*d*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2
 + (c^2*d^2 + a*c*e^2)*x^2)) - (c*d^2 + a*e^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)))/(c^2*d^2*e + a*c*e
^3)]

Sympy [F]

\[ \int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx=\int \frac {x}{\sqrt {a + c x^{2}} \left (d + e x\right )}\, dx \]

[In]

integrate(x/(e*x+d)/(c*x**2+a)**(1/2),x)

[Out]

Integral(x/(sqrt(a + c*x**2)*(d + e*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x/(e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F(-2)]

Exception generated. \[ \int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x/(e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx=\int \frac {x}{\sqrt {c\,x^2+a}\,\left (d+e\,x\right )} \,d x \]

[In]

int(x/((a + c*x^2)^(1/2)*(d + e*x)),x)

[Out]

int(x/((a + c*x^2)^(1/2)*(d + e*x)), x)